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e Scan the "Explore" QR code to discover the geology of porphyry.

e Magma fertility is a crucial indicator for porphyry copper deposits;
its accurate assessment requires analyzing complex geological
data, a task that machine learning significantly streamlines to
enhance exploration efficiency.

To evaluate and compare the efficacy of
various machine learning models in
predicting magma fertility for enhanced
porphyry copper deposit identification.

DATA DESCRIPTION

Magma Fertility

Sample Age 19 Trace Elements

e 2988 Zircon Samples - 80:20 train test split

e 28 Total Features | Excluded 8 highly correlated features

e Elements: Neodymium (Nd), Samarium (Sm), Europium (Eu),
Hafnium (Hf), Dysprosium (Dy), Uranium (U), Praseodymium (Pr),
Thorium (Th), Cerium (Ce), etc.
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Figure 1: Accuracy Comparison of Imputation Methods

Figure 2: Distribution of Magma Fertility in Dataset

PERFORMANCE OF TEST SET OVER HYPER-PARAMETER TUNED MODELS

Model Precision | Recall | F1-Score | Overall Accuracy
Logistic Regression 0.81 0.93 0.86 0.873
Support Vector Machines 0.89 0.95 0.92 0.928
Decision Tree 0.90 0.87 0.88 0.898
Random Forest 0.96 0.95 0.96 0.962

Table 1: Evaluation Metrics for Minority Class (Fertile) across test data against 10-Fold Cross Validated Models

ANALYZING DECISION BOUNDARIES OF PCA-TRANSFORMED FEATURES
ACROSS TEST SET

Logistic Regression - Decison surface

Support Vector Machines - Decison surface
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Figure 3: Logistic Regression - Linear Decision Boundary Figure 4: SVM - Radial Basis Function
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Figure 5: Decision Tree - Segmented Decision Boundary
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Figure 6: Random Forest - Segmented Decision Boundary
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FEATURE IMPORTANCE - RANDOM FOREST

Top 10 Features Based On Random Forest (~ 77% contribution)
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Figure 7: Feature importance scores quantify the contribution of each
feature to the model's predictive performance, indicating how much each
feature impacts the model's decisions.

BEST PERFORMING MODEL: RANDOM FOREST

Confusion Matrix for Random Forest Classifier Over Test Set
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Figure 8: This confusion matrix indicates high accuracy in predicting 'Barren'
and 'Fertile' classes, with correct predictions of 327 and 248, respectively, and
only 23 misclassifications."
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INFERENCES & FUTURE DIRECTION

e After evaluating several machine learning models, the Random
Forest model demonstrates superior performance in classifying the

dataset, achieving high accuracy as well as balanced precision and
recall.

e Inthe future, feature selection should be enhanced by
incorporating a broader range of geochemical data and work closely
with geochemists to identify key trace elements and isotopic ratios
which would help filter the data leading to more accurate and
scientifically grounded Random Forest model.
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